J. Technology and Education, Vol.20, No.1, pp.7-11 (2013)

研究論文

ポリチオフェン膜にラッカーゼを吸着固定させた 直接電子移動型バイオカソード

浅野 健, 近藤みずき, 桑原敬司*, 下村雅人

長岡技術科学大学 生物系(〒940-2188 新潟県長岡市上富岡町 1603-1) *kuwataka@vos.nagaokaut.ac.jp

Biocathode composed of polythiophene film and adsorbed laccase involving direct electron transfer

Takeshi ASANO, Mizuki KONDO, Takashi KUWAHARA and Masato SHIMOMURA

Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology (1603-1, Kamitomioka-machi, Nagaoka 940-2188, Japan)

(Received November 30, 2012; Accepted January 23, 2013)

Abstract

Conducting polymer films were prepared by electrochemical polymerization of thiophene, aniline and pyrrole. Biocathodes were fabricated by adsorbing laccase on the films in an acetate buffer solution containing laccase. A bioelectrocatalytic O_2 reduction was investigated with the biocathodes by cyclic voltammetry in 0.05 M acetate buffer solutions (pH 4.5) saturated with O_2 or N_2 . The biocathode fabricated with polythiophene gave the O_2 reduction current based on direct electron transfer (DET) from the polymer to laccase. The onset potential of the O_2 reduction current was +0.63 V vs. Ag/AgCl. No O_2 reduction current was obtained using biocathodes fabricated with polyaniline and polypyrrole, whereas adsorbed laccase had O_2 -reducing activity. Thus, DET to active sites of laccase molecules was considered to depend on the properties of the conducting polymer used.

Key words: Biocathode, Direct Electron Transfer, Laccase, Polythiophene

1. はじめに

ラッカーゼは 4 個の銅イオンを活性中心にもつ酸化酵素であり,基質特異性が低く広範囲な電子供与体を基質と することから[1-3],食品や環境,エネルギー変換などさ まざまな分野で注目されている[4-9]。

ラッカーゼはT1サイトとT2/T3サイトと呼ばれる二つ の活性部位を持つ。T1サイトは一核銅錯体からなり,基 質の酸化を担う。また,三核銅クラスターからなるT2/T3 サイトは,T1サイトでの基質の酸化によって生じた電子 を利用して酸素を水に還元する[1,3]。この酸素から水を生 成する性質が注目され,ラッカーゼをバイオ燃料電池の酸 素還元極(バイオカソード)の触媒として利用することが 検討されている[10-12]。

バイオカソードの触媒として用いる場合, ラッカーゼは 酸素の還元に使用する電子を電極から受け取る必要があ る。このラッカーゼと電極との間の電子の移動には, メデ ィエータと呼ばれる酸化還元物質を経由する方法(MET) と電極からラッカーゼの T1 サイトに直接移動する方法 (DET)がある。

MET 型電子移動は、メディエータの還元が可能であれ ばよいため、利用できる電極材料の種類が多い。しかし、 メディエータの電解セル内への添加、もしくは電極表面へ の固定化を必要とし、電極の電位は使用するメディエータ の酸化還元電位に依存する[13]。

DET 型電子移動は、ラッカーゼのみを電極上へ固定化 すればよいため、MET 型に比べ電極の構成が非常に単純 となる。さらに、電極の電位はラッカーゼ本来の酸化還元 電位に近い値となる。しかしながら、現在のところ、DET 型バイオカソードに関する報告は電極材料としてカーボ ンを利用したものが大部分であり、その他の電極材料につ いては限られている[10-12]。

有機導電体である導電性ポリマーは、コンデンサーや機 能性フィルムなどへの応用が検討されており、モノマーや ドーパントの選択、化学的な修飾などにより、多種多様な 機能を発現する[14]。この導電性ポリマーを電極材料とし て利用した DET 型酸素還元の達成は、バイオ燃料電池の 利用範囲の拡大をもたらすとともに, 導電性ポリマーの次 世代バイオ素子への応用の可能性を示すと考えられる。

そこで本研究では、ラッカーゼを酸素還元触媒とする DET 型バイオカソードの電極材料への導電性ポリマーの 適用を検討した。その結果、ポリチオフェン膜が電極材料 として有用であることを見出し、さらに、固定化ラッカー ゼの保持している酵素活性などから、ポリチオフェンの疎 水性が効果的に作用することで DET 型の酸素還元が起こ ることを明らかにした。

2. 実験

2.1. 試薬および装置

ラッカーゼ(EC 1.10.3.2, from *Trametes* sp., 108 U/mg)は天野エンザイム(株)より入手した。チオフェンお よび過塩素酸テトラエチルアンモニウムはナカライテス ク(株)から,ピロールおよびアニリン, 2,2'-アジノビス(3-エチルベンゾチアゾリンスルホン酸)アンモニウム塩 (ABTS)は Aldrich Chem, Co.から入手した。その他の試 薬や溶媒は特級もしくは分析用グレードのものをそのま ま用いた。すべての水溶液は純水精製装置から得た水を用 いて調製した。

電解重合および電気化学的な測定はポテンシオスタッ ト/ガルバノスタット(AutoLab, μ AutoLab type III およ び ALS, DY2323)を用いて行った。測定セルは三電極セ ルを用い, 銀/塩化銀電極(Ag/AgCl)および白金板(2 cm × 2 cm)をそれぞれ参照電極および対向電極として使用した。 作用電極として使用した金電極($\phi = 3$ mm)は, 0.5 μ m の α -アルミナペーストにより研磨後,純水で超音波洗浄を 行った後,使用した。吸光度の測定は UV-VIS 分光光度 計(島津製作所製, UV-3100PC)を用いて行った。

2.2. ラッカーゼ固定化電極の作製

ポリチオフェン膜は 0.5 M のチオフェンおよび 0.1 M の過塩素酸テトラエチルアンモニウムを含むアセトニト リルを重合溶液とし, +2.2 V vs. Ag/AgCl の電圧を作用電 極に印加することによって作製した。ポリピロール膜は 0.5 Mのピロールおよび 0.1 Mの過塩素酸テトラエチルア ンモニウムを含むアセトニトリルを重合液とし,+1.0 V vs. Ag/AgClの電圧を印加することで作製した。ポリアニ リン膜は 0.5 Mのアニリンを含む 0.5 M 硫酸を重合液と し,+1.0 V vs. Ag/AgClの電圧を印加することで作製した。 いずれのポリマー膜を作製する場合も重合は通過電荷量 が 100 mC に達するまで行った。導電性ポリマーにより修 飾した電極はモノマーや弱く吸着したポリマーを除くた めに蒸留水で洗浄した。ラッカーゼの固定化は 1 mg/mL のラッカーゼを含む 0.05 M 酢酸緩衝液(pH 4.5)中に作製 した導電性ポリマー膜を電極ごと 2 時間,4°C で浸漬する ことで行った。

2.3. ラッカーゼ固定化電極の評価

作製したラッカーゼ固定化電極の電気化学的な特性は, 0.05 M 酢酸緩衝液(pH 4.5)を測定溶液として用い, +0.1 Vから+0.7 V vs. Ag/AgClの範囲でサイクリックボルタン メトリを行うことで調べた。電位の掃引速度は 5 mV/s と した。酢酸緩衝液中の溶存酸素の濃度は,酸素ガスもしく は窒素ガスをバブリングすることで調製した。

電極に固定化したラッカーゼの活性は 0.25 mM の ABTS を含む 0.05 M 酢酸緩衝液(pH 4.5) 2 mL に作製し た酵素電極を 25°C で浸漬し, ラッカーゼとの反応によっ て生じる ABTS の酸化体の吸光度を波長 420 nm で 1分 ごとに測定することで評価した。ラッカーゼとの反応によ り, ABTS 溶液は無色から緑色に変化する。活性単位 1 U は 1 分間で 1 μmol の ABTS の酸化体を生成する酵素量と 定義した。

3. 結果と考察

3.1. ラッカーゼ固定化ポリチオフェン膜による酸素還元

ポリチオフェン膜表面にラッカーゼを固定化した電極 は、酸素存在下、+0.6 V vs. Ag/AgCl 付近から立ち上がる 特徴的な還元電流を示した(Figure 1A)。還元電流の大き さは酸素濃度に依存し、緩衝液中の酸素濃度を増加させる につれて増加した。

Figure 1 Cyclic voltammograms for (A) laccase-adsorbed polythiophene film, (B) bare polythiophene film and (C) laccase-adsorbed gold electrode in O_{2^-} (solid line) and N_{2^-} (dashed line) saturated acetate buffer solutions of pH 4.5.

ラッカーゼ未固定のポリチオフェン膜を用いた場合に 得られるボルタモグラムの形状は,酸素の有無に影響され なかった(Figure 1B)。また,ポリチオフェン膜で修飾し ていない金電極にラッカーゼの吸着を行った電極につい ても,酸素の存在がボルタモグラムに大きく影響を与える ことはなかった(Figure 1C)。

ラッカーゼと酸素が共存しなければ特徴的な還元電流 は得られなかったことから, Figure 1A に示した還元電流 の生成にポリチオフェンに吸着したラッカーゼによる酸 素還元反応が関与していることは明らかである。また,こ の還元電流が立ち上がる電位は *Trametes* sp.由来のラッ カーゼの酸化還元電位およびカーボン電極上にラッカー ゼを固定化することで作製された DET 型バイオカソード で得られた酸素還元電流の立ち上がり電位に近い[10,11]。

これらの結果に加えて、ポリチオフェン膜による電極修 飾を行わなければ還元電流は得られないこと、電流の生成 にメディエータを必要としないことを考慮すると、ラッカ ーゼを吸着したポリチオフェン膜を用いることで得られ た特徴的な還元電流は、ポリチオフェン膜からラッカーゼ への DET をともなった酸素還元電流であるといえる。す なわち、ラッカーゼを固定化したポリチオフェン膜は DET 型バイオカソードとして機能することが明らかとな った。

3.2. ラッカーゼと導電性ポリマー間の直接電子移動

ポリチオフェンと同様に導電性ポリマーとして知られ るポリアニリンおよびポリピロール膜を用いて作製した ラッカーゼ固定化電極は,酸素存在下であってもポリチオ フェン膜を用いた際に見られたような+0.6 V vs. Ag/AgCl 付近から立ち上がる還元電流を示さなかった(Figure 2)。 また,本研究で検討した範囲内では,これらの膜の作製条 件は還元電流の生成に影響しなかった。

Table 1 に示すように、ラッカーゼはいずれの導電性ポ リマー膜上に固定化された場合も酵素活性を保持してい た。とくに、ポリアニリンで修飾した電極の電極当たりの 酵素活性はポリチオフェンを用いた場合よりも約 1.4 倍 大きかった。それにもかかわらず、DET 型の酸素還元は ポリチオフェン膜のみでしか起こらなかった。これらの結 果は、電極材料として利用した導電性ポリマー膜の性質が ラッカーゼとの間の DET に非常に強く影響することを示 している。

Figure 2 Cyclic voltammograms for laccase-adsorbed (A) polyaniline and (B) polypyrrole film in O_{2^-} (solid line) and N_{2^-} (dashed line) saturated acetate buffer solutions of pH 4.5.

Table 1 Activity of	adsorbed	laccase
---------------------	----------	---------

	Activity (mU/cm ²)
polythiophene	124
polyaniline	176
polypyrrole	44

本研究ではラッカーゼの活性を緩衝液中に溶解させた ABTS との反応速度により評価している。すなわち,ポリ マー膜に吸着したラッカーゼが活性を保持してさえいれ ば,活性の値は得られる。一方で,電極材料とラッカーゼ 間で DET が起こるためには,ラッカーゼの活性部位と電 極材料が近接する必要がある[1,10,12]。したがって,電極 上で活性を保持しているすべてのラッカーゼが電流生成 に関与しているとは考えづらく,固定化されたラッカーゼ の配向性の違いが得られる電流値に影響していると考え られる。 ラッカーゼの酸化還元を担うT1銅の周囲を取り囲むポ ケットには疎水性の官能基が多く存在する。そのため、疎 水性の高い物質がT1 銅に近接しやすいとされている [2,12]。この疎水性ポケットを利用してラッカーゼの配向 性を制御し、DET の効率を向上させたという報告がある [15]。この報告では、アントラセンによって修飾したカー ボンナノチューブにより電極表面を修飾し、ラッカーゼの T1 サイトが疎水性のアントラセンに選択的に配位するこ とを利用してラッカーゼの配向性を制御している。

本研究で使用した三種類の導電性ポリマーを比較する と、ポリチオフェン膜の疎水性がもっとも高い。したがっ て、ポリマーの疎水性の強さが DET のための重要な要素 であり、ポリチオフェンを用いた場合のみ酸素還元電流が 得られた要因であると考えられる。

4. まとめ

導電性ポリマーであるポリチオフェン膜上にラッカー ゼを吸着固定した電極が, DET 型のバイオカソードとし て機能することを示した。この電極ではポリチオフェン膜 の疎水性が T1 サイトへの接近を可能とし, DET に有利 に働いていると考えられる。本研究で得られた成果は, 導 電性ポリマーの DET 型バイオカソードの電極材料として の応用の可能性を示しており, 今後のバイオカソードの開 発に重要な知見を与えると予想される。

謝辞

本研究を行うにあたり、ラッカーゼを提供してくださっ た天野エンザイム株式会社にこの場を借りて感謝申し上 げる。また、本研究の一部は科学研究費補助金(基盤研究 (B)課題番号 23360302)の交付を受けて行われたものであ り、ここに記して謝意を表したい。

引用文献

[1] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Multicopper oxidases and oxygenases, Chem. Rev., vol. 96, No. 7, pp. 2563-2605 (1996).

- [2] J.P. Kallio, S. Auer, J. Jänis, M. andberg, K. Kruus, J. Rouvinen, A. koiviula, N. Hakulinen, Structurefunction studies of a *melanocarpus albomyces* laccase suggest a pathway for oxidation of phenolic conpounds, J. Mol. Biol., vol. 392, No. 4, pp. 895–909 (2009).
- [3] T. Sakurai, K. Kataoka, Structure and function of type I copper in multicopper oxidases, Cell. Mol. Life Sci., vol. 64, No. 19–20 pp. 2642–2656 (2007).
- [4] K. Fahr, H. Wetzstein, R. Grey, D. Schlosser, Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi, FEMS Microbiol. Lett., vol. 175, No. 1, pp. 127–132 (1999).
- [5] R.C. Minussi, G.M. Pastore, N. Durán, Potential applications of laccase in the food industry, Trends Food Sci. Technol., vol.13, No. 6–7, pp. 205–216 (2002).
- [6] S.R. Couto, J.L.T. Herrera, Industrial and biotechnological apprications of laccases: A review, Biotech. Adv., vol. 24, No.5, pp. 500–513 (2006).
- [7] A. Zille, F.D. Munteanu, G.M. Gübitz, A.C. Paulo, Lacase kinetics of degradation and coupling reactions, J. Mol. Catal. B: Enzymematic, vol. 33, No. 1-2 pp. 23-28 (2005).
- [8] C. Eggert, U. Temp, K.L. Eriksson. Laccase is essential for lignin degradation by the white-rot fungus *Pycnoporus cinnabarinus*, FEMS Microbiol. Lett., vol. 407, No. 1, pp. 89–92 (1997).
- [9] E. Srebotnik, K.E. Hammel, Degradation of non phenolic lignin by the laccase/1-hydroxybenzotriazole system, J. Biotech., vol. 81, No. 2–3, pp. 179–188 (2000).
- [10] T. Miyake, S. Yoshino, T. Yamada, K. Hata, M. Nishizawa, Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells, J. Am. Chem. Soc., vol. 133, No. 13, pp. 5129–5134 (2011).
- [11] Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, K. Kano, Fructose/dioxygen biofuelcell based on direct electron transfer-type bioelectrocatalysis, Phys. Chem. Chem. Phys., vol. 9, No. 15, pp. 1793–1801 (2007).
- [12] C.G. Sánchez, M. Pita, C.V. Domínguez, S. Shleev, A.L.D. Leacey, Gold nanoparticles as electronic bridges for laccase-based biocathodes, J. Am. Chem. Soc., vol. 134, No. 41, pp. 17212–17220 (2012).
- [13] C. F. Sánchez, T. Tzanov, G. M. Gübitz, A. C. Paulo, Voltammetric monitoring of laccase-catalysed mediated reactions, Bioelectrochem., vol. 58. No. 2, pp.149–156 (2002).
- [14] Y. Kobayashi (ed.), "Recent progress in conducting polymers", CMC publishing Ltd., Japan (2009).
- [15] M. T. Meredith, M. Minson, D. Hickey, K. Artyshkova, D. T. Glatzhofer, S. D. Minteer, Antracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction, ACS Catal., vol. 1, No. 12, pp. 1683–1690 (2011).